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Abstract

The paper presents a numerical method for solving the problem of an infinite, isotropic elastic plane containing a
large number of randomly distributed circular elastic inclusions with uniform interphase layers. The bonds between the
inclusions and the interphases as well as between the interphases and the matrix are assumed to be perfect. In general,
the inclusions may have different elastic properties and sizes; the thicknesses of the interphases and their elastic
properties are arbitrary. The analysis is based on a numerical solution of a complex singular integral equation with the
unknown tractions at each circular boundary approximated by a truncated complex Fourier series. The Galerkin
technique is used to obtain a system of linear algebraic equations. The resulting numerical method allows one to
calculate the elastic fields everywhere in the matrix and inside the inclusions and the interphases. Using the assumption
of macro-isotropic behavior in a plane section one can find the effective elastic moduli for an equivalent homogeneous
material. The method can be viewed as an extension of our previous work (Int. J. Solids Struct. 39 (2002) 4723) where
simpler spring-like interface conditions were modeled. The problem of overlapping of the fibers and matrix inherent to
spring type interface is discussed in the context of the present model. Numerical examples are included to demonstrate
the effectiveness of the new approach.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper is concerned with two-dimensional modeling of multiple nonoverlapping circular inclusions
(fibers) with uniform interphases. Fiber-reinforced composite materials are a natural and important
application of this model. We idealize the fibers as uniform, infinite circular cylindrical inclusions that are
connected to the matrix through uniform coaxial bands or interphases. The elastic properties of the in-
terphases are different from those of the fibers and the matrix.

There are several reasons why interphases are present in fiber-reinforced composites. In some materials
interphases are the result of coating of the fibers with soft polymers in order to reduce high stresses at the
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fiber-matrix interfaces and enhance the toughness of the composite (Crasto et al., 1988; Subramanian and
Crasto, 1986; Mascia et al., 1993; Nassehi et al., 1993a,b). The interphases may also appear as a result of
damage around the fibers in forms of voids, micro-cracks, and other defects (Theocaris, 1987). They may
also appear due to chemical reaction or diffusion during the manufacturing process (Lagache et al., 1994;
Lutz and Zimmerman, 1996). In any case, the presence of interphases significantly affects the properties of
composite materials and needs to be taken into account in numerical modeling.

Numerous papers have been written on the effects of interphases on the micro- and macro-mechanical
behavior of fiber-reinforced composite materials (see, for example, Aboudi, 1987; Achenbach and Zhu,
1989, 1990; Benveniste et al., 1989; Benveniste and Miloh, 2001; Bigoni et al., 1998; Bigoni and Movchan,
2002; Christensen and Lo, 1979; Hashin, 1990, 2002; Jasiuk and Kouider, 1993; Theocaris, 1987). Ana-
lytical and semi-analytical treatments of the problem are limited to the cases of a single inclusion or a pair
of inclusions (Kouris, 1993; Ru, 1998, 1999; Ru and Schiavone, 1997; Sudak et al., 1999; Sudak and
Mioduchowski, 2002). The finite element method is the most common numerical tool for modeling fiber-
reinforced composites with imperfect interphases (Nassehi et al., 1993a,b; Lagache et al., 1994; Al-Ostaz
and Jasiuk, 1996; Wacker et al., 1998) and has been used to model both uniform (Al-Ostaz and Jasiuk,
1996; Lagache et al., 1994) and nonuniform (Wacker et al., 1998) interphases. To avoid large numbers of
degrees of freedom in the modeling, these authors employ the concept of a unit cell, but even with this
assumption the method is computationally intense, especially for problems involving inclusions with thin
interphases.

Boundary element simulations of composite materials with interphases are rather limited. The most
common approach is to use the simplest case of a spring type interphase (Achenbach and Zhu, 1989, 1990;
Zhu and Achenbach, 1991; Gulrajani and Mukherjee, 1993; Pan et al., 1998). In such a model the thickness
of the interphase is neglected, tractions are assumed continuous across the interphase, and the jumps of the
normal and shear displacements are taken proportional to the corresponding components of tractions.
Hashin (1990, 1991) showed that the spring type model corresponds to the case of a very thin and soft
interphase and developed relationships between the interface parameters for the spring type model and the
elastic properties of the interphase layer. Benveniste and Miloh (2001) showed that the spring type inter-
phase represents just one of several other possible interphase regimes. They proved that in case of a thin
interphase there are seven distinct regimes of interface conditions. Apart from a lack of generality, a dis-
advantage of the simple spring type model is that it may cause physically unrealistic overlapping of the
fibers and matrix under some loading conditions. To prevent overlapping a special iterative procedure
needs to be used (Achenbach and Zhu, 1989, 1990). All of the boundary element simulations mentioned
above used a unit cell approach and a periodic distribution of the fibers.

To our knowledge, the only boundary element paper where the interphase was regarded as an elastic
layer is the one by Liu et al. (2000). They presented a direct boundary element approach for cylindrical and
square unit cell models of the composites. The unit cell contained just one inclusion.

In a previous paper (Mogilevskaya and Crouch, 2002) we presented a new approach for solving two-
dimensional problems involving a large number of circular elastic inclusions with spring type interface
conditions. A similar approach has also been used for problems with multiple perfectly bonded inclusions
and holes (Mogilevskaya and Crouch, 2001; Wang et al., 2003, in press). The analysis is based on a
numerical solution of a complex hypersingular integral equation with the unknown displacement discon-
tinuities and tractions at each circular boundary approximated by a truncated complex Fourier series (a
real variables analog of this approach is presented in Crouch and Mogilevskaya (2003)). Infinite Fourier
series, in fact, provide the analytic solution for this class of problems; the only errors introduced in the
numerical model are due to truncation of the series and round-off. In the present paper we extend this
general approach to the problem of an infinite, isotropic elastic plane containing a large number of ran-
domly distributed circular elastic inclusions with uniform interphase layers. The bonds between the
inclusions and the interphases as well as between the interphases and the matrix are assumed to be perfect.
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The inclusions may have different elastic properties and sizes and the thicknesses of the interphases
and their elastic properties are also arbitrary. The approach allows one to calculate elastic fields everywhere
in the matrix and inside the inclusions and the interphases.

2. Problem formulation

Consider an infinite, isotropic elastic plane subjected to a biaxial stress field at infinity and containing N
circular elastic inclusions (Fig. 1). The inclusions are connected to the matrix through coaxial circular
interphase layers. The bonds between the inclusions and the interphases as well as between the interphases
and the matrix are assumed to be perfect. The shear moduli y,; and Poisson’s ratios vi; j = 1,..., N, of the
inclusions are arbitrary and are in general different from those of the matrix y and v or of the interphases ,,
and v, j=1,...,N. The distances between the inclusions can be arbitrarily small (in particular, their
interphases may touch one another). Let R,; and L,; denote the radius and boundary of the jth inclusion,
and let R,; and L,; be the radius and boundary of the jth interphase. The center of the inclusion and its
interphase is located at the same point z;. The direction of travel is counterclockwise for all the boundaries
Lyi; and L,;. The unit normal » points to the right of the direction of travel; the unit tangent s is directed in
the direction of travel. The distribution of displacements and stresses in the composite solid are to be
determined.

The system of inclusions is in equilibrium and it follows that the resultant force and moment on the
boundary of each inclusion (j = 1,...,N) and interphase are equal to zero. The mathematical expressions
for these conditions can be written as follows (Muskhelishvili, 1959)

/akj(r)dr:O, k=1,2 (1)

Ly

®
Stresses 4 V4 ®

applied at infinity

Fig. 1. Problem formulation.
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Re/ 10(1)dT =0, k=1,2 (2)
Ly

where 6;(z) = 0yu(z) + 10ys(2), in which oy;,(z) and 64;(z) are the normal and shear tractions on contour
Ly;, z = x + 1y is complex coordinate of a point (x,y) in the global Cartesian coordinate system (xOy) in a
plane, and i = v—1.

3. Boundary integral equation

As in our previous papers (Mogilevskaya and Crouch, 2001, 2002; Wang et al., 2003, in press) we use the
complex hypersingular boundary integral equation originally developed by Linkov and Mogilevskaya
(1994), which is valid for the more general problem of an infinite plane or a finite body containing cracks,
cavities, and inclusions of arbitrary shapes. For the particular case considered here, the terms containing
hypersingular integrals (these involve displacement discontinuities on the boundaries Ly;, £ = 1, 2) vanish
and the equation is singular. The resulting equation can be written as follows

; kZ: [(Mw — asy) /L/ @JF (alkj—a3kj)/ %‘(T)%Kl (T,f)d“ralkj/ ok(T )us(T t)dz ]

ki Ly Ly

:Zmr%()+a(ﬂ

2
(3)
where ¢ € Uj.\’zl(Llj ULy), k=1,2,
Ay = Ay . )
O_(t)_akj(t)} 1ft€Lk/ (4)
1 1 1+K1j 1+K2,‘ 1+K1/‘ 1+K2j 1 1
a :_7_; ar: = ’ a1 = — 7 .= JE——
Yoy 2w YT 2y 2y, W, 2, P, 2
I+xy; l14x I+wxy 14x
= . — — 5
anj 2,“2j —+ 2,[1 ) asy; 2,“2] 2,[1 ( )
a>(t) = — ” o —|—a((iyy -0y — 21axy) (6)
oy, a5y, and a3y are the stresses at infinity; x = 3 — 4v for plane strain; x = (3 —v)/(1 + v) for plane stress; a

xx 2 w’

bar over a symbol denotes complex conjugation; d7/d¢ = exp(—2iy) where y is the angle between the axis Ox
and the tangent at point ¢; and

T—1t
T—1

—t
m@g:m;7 K (1,1) =
—

The components of the stress tensor 6., 0,,, and o,, and the displacements u(z) = u,(z) + iu,(z) at any
point z inside the inclusions and matrix can be calculated from two complex functions ¢(z) and ¥(z) b
using the Kolosov—Muskhelishvili formulae (Muskhelishvili, 1959)

2uu(z) = ko (2) — 29/ (2) = Y(2)
Oxx + 0y = 4Reqo/(z) (7)
Gy — O + 210, = 220" (2) + /' (2)
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The Kolosov—Muskhelishvili potentials can be expressed in terms of integrals of the boundary tractions as
follows (Mogilevskaya and Crouch, 2001)

¢(z) = i(x + Zl /Zalkj/L ij(‘[) In(t — z)dt + ¢™(2)
T .
o e + Z‘: k=1 [alkj /Lk' 7 TTETZ + sy — ) /Lk. o(1) In(x — 2)dz| +¥™(2)

where p, and x, are the elastic constants of the /th inclusion if |z —z,| <Ry, the /fth interphase if
Ry < |z —z¢| < Ry, or else p, = u, k, = k if z is a point of the matrix, and

oo lué(K + ) O + O-)O’;
0 (=) = ulke+1) 4 ©)
V> (2) = p(+1) oy —o5 + Zlaxy
(K( + ) 2

In writing (8) we have neglected constant terms in each expression. It is clear from (7) that these
terms would only affect the expressions for the displacements. The missing constants in expressions (8)
can, if desired, be found from the conditions of the continuity of the displacements across each boundary
L.

4. Numerical solution

In order to solve (3), we represent the unknown tractions oy;(7) at each boundary L;; by a truncated
complex Fourier series of the form

Ukj ZB—mk/ mkj + ZBmk//F;nkn TE Lk/ (10)
m=0
where
Rk' m
Fuyi(t) = <T_’Z> (11)
J

It will be seen from the subsequent derivations that the number of terms in the truncated Fourier series
must be the same for L;; and L,;. We note, however, that this number need not be the same for all the
individual inclusions.

By substituting the expression (10) into equilibrium conditions (1) and (2), we find that

B_1;; =0; By are real (12)

forallj=1,...,Nand k=1, 2.

The complex coefficients B_,,; (m =1,...,M;) and B,;; (m =0,...,M;) in series (10) need to be deter-
mined.

All integrals involved in (3) can be evaluated analytically similarly to the case of perfectly bonded
inclusions (Mogilevskaya and Crouch, 2001). By substituting the corresponding expressions for those
integrals into Eq. (3) we obtain the following system of equations:
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(1) t e L][

011(
E B_piFe(t

C
)+ —301/ + 3—1[ ZBmw/me

R \"*
(@120 — asy ZBmZé( ] ) Foue(t)

m=2
_ Rl[ m R%[ 2 N ’—
+ 2a120Box + a1 ZBmZZ/FmZ( — iy Z B Ror 1 - R Fe(t) + Z Z Ei
-1 2t e -1 .
! 2
K + 1 (o¢] o0 o0 o0 1 00
- (% + a3 = Bl — % — 2i07)|
(11) tE€ Ly
M, . M,
Cra Ca C3
- 7 B_neF(t) 3 —— By + ZBmZZ/FmZI —ay Z B_ieFme(t)
=2 m=2

+ (2a11¢ — az)B !
+ (2a11, 310) W(RZ[

—ay Z m—+1 Bml/(

m=2

R ' 2 My Rlé m+2
) + (aie — asi) ZB’”” (R ) /szg(t)
m=1 2t

R R? 2N
M) ( - —;‘) / m2[ Z =2
Ry R, =

;

[
~ —

K + 1 o0 00 00 00 1 00
= =T Lo e = P00 — o~ 2i03)

(13)
where

Cire = 2140 + Ao — A3e;  Coke = 4aire — axye — A3pe;  C3ke = 201k — ok — A3

and

M;

Z ki Fln 2 (1) Pope (1)

(1) = { — Qg ZBﬂnk/ ki (8) + (2ai; — asiy) BokiFope )sz,‘( )+ (auy — asi)

M;

+ auy Z Efmkj

m=2

— 1+ (m + V)P0 Fg (1)

t—z |——
— mPy(t) =—— kaj(t)}

t— Z/
By writing this equation for all the inclusions, £ =1 to N, one gets a system of 2N complex algebraic
equations involving 222/:1(2MM— 1) complex coefficients B_,u0 (m=2,...,M,, k=1, 2) and B,
m=1,...,M,, k=1, 2), and 2N real coefficients B,.

5. One inclusion

In the particular case of a single inclusion with the center z,, Eq. (13) can be solved analytically because
both sides of this equation represent a truncated complex Fourier series. The two sides of the equation are
equal if and only if the corresponding complex coefficients for terms of the same power are equal. As a
result we get the following system of equations:
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(i)t e Ly
Clie R\ R \" R}
— =B - - 2t B_,, -1 B | —  ——4
b 10 (0124 aazz) (R%) 2+ (m )a12£ 20 (R%) ( R@)
:{%(a;’;—ag—ﬁo;;), m=2
0, m>2 (14)
Co1e k+1/ ~
73012 +2a12Bp = — 4 <Jxx + aw)
C3uy Ri\"
_Bm T Bm = 07 O
) 10+ ary <R2£> 20 m >
(11) t e L%
m Kk+1 00 00 00 _
- %Bfmﬂ 011£<ﬁ) B_ = {L“(ayy on ~ 2oy), m=2
2 Rz[ 0, m>2
2
C20 Ry, k+1/ o
— B+ (2ane — az) (R—%> By = T (GXX + %) (15)
c R m+2 R m R 2 .
%Bm% + (ane — asip) (R—W) Buie + are(m + 1)(R—1/> (R_”> —1{B_ =0, m>0
2 2 2

We see from expressions (14) and (15) that the coefficients B_,, 14, B_,2; and B,1¢, B,z are involved in the
same equations of the system. This means that number of terms in the truncated Fourier series must be the
same for L;; and L,;. The solution of system (14) and (15) leads to the following expressions for the only
nonzero coeflicients B_zw, BOlla Bz]g, and B_zzg, B()z[, Bzzgi

_(K + 1)(0’0‘,}}O — O';i — 2i0§;)(61221 + a32g)
By = : 80

(K —+ 1) (6;; —+ O';yc) (azzg —+ 61325)

2pleanecane — 8ara(2ary, — azie)RY, /R,

R\ | (R’ =
Bryy = -3 — — | —1|B_ A
210 ajedle (Rzz) l(sz 210

(k+ 1) (6% — 6% — 2i6) Ry \*
= : - +all€<_w) B_oie| / ciu
4p Ry

(k+1) (G)i; + ijf) 210 = 2(2ane — a3ie) R, /R3]

2uleanecane — 8ara(2ar — az)R3, /RS,

By =

B yyy= —12

Boy = —

Riu\* /Ry \cay
A:aly(allé_aﬂl)( ll) . (2[) C31¢C32¢

Ry Ry, 4
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2 2
R
//1 — ane(aie — asy) (R”>
2%

Apart from notation this result agrees with the solution obtained by Ru (1999).
For future reference it is useful to rewrite a real analog of (14) and (15) in matrix form. We introduce the
vector of the unknowns as follows

c R\’
A:% crie + 3czieancaine (RZ) -1

X, = B‘é;] (17)

where the subvector Xy, £k = 1 or 2, is defined as

X}, = {ReB_y10, IMB 44, . . ., Re B30, I B s, Bogr, Re By, Im By, ..., Re By, Im By } (18)
A real analog of the system (14) and (15) can then be written in matrix form as

AuX, =D, (19)

where the vector of the right-hand side D, has the form
D, = [D} (20)

in which the subvector Dy is the same as for an isolated perfectly bonded inclusion (expression (30) from
Mogilevskaya and Crouch, 2001).
The square matrix A, of dimension (n, x n,) with

ng =2(4M, — 1) (21)
in (19) can be written as

wo= [0 3]

where four square submatrices Ay (¢), A1x(€), Ay (€), and Ay (¢) have the dimension 4M, — 1 x 4M, — 1.
The diagonal submatrices A, (¢) and A,,(¢) correspond to the cases of isolated perfectly bonded inclusions
(expression (32) from Mogilevskaya and Crouch, 2001): one with the radius R, and the elastic properties of
the ¢th inclusion, and the other with radius R, and elastic properties of the /th interphase. The submatrices
A»(¢) and A, (¢) are triangular and sparse. Taking into account that the matrix Ay, is sparse, a special
Gauss-elimination type procedure can be designed to invert A, with modest computational cost.

(22)

6. N inclusions

In the general case of N inclusions we use the Galerkin method (e.g. Brebbia et al., 1984) to get a linear
algebraic system. For the case when ¢ € L, (Ly) we successively multiply both sides of Eq. (13) by the
powers (t —z,)" [p=—(M; + 1), —M,,...,—1,1,2,..., M, — 1] and integrate over Ly, (Ly). The integrations
can again be done analytically similarly as in Mogilevskaya and Crouch (2001). This gives the following
systems of 4M, equations with respect to the unknown coefficients:
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(1) M, — 1 equations (p=1,..., M, — 1)

iy Ry Ry, R\
—B_ — — — B_ — —1 B
B (p+1)1e (012/ 6132/) <Rzz> (p+1)2¢ — Paiz [(Rzy) ] <R2z) (p+1)2¢

N > u,
- P J m + — 1 _ R
+> Fpne(z) ) {(2a1k,~ — aaj)pFa () Bog + awg ZP( ” i ! >Bmkijkj(Zz)
i k=1 m=2
A
MJ

—_—Fm+ —Fm+ Zp— Z; m —+ —_—
X|:<F'21((Zj)p+lp+1:‘2kj(z() mpéfz_:ﬂ alk, asjj Z( p) mkjF(m+2)kj(ZZ)}

m=1
:{"J}(ay} —oy —2iey), p=1
0, p#l

(i1) the equation

Coly ) 00 00
2] Bowe + 2a1Boy — Z Zalkj Z [ —mij Pk (20) + Bfmkijkj(Zé)} =772 (0% +a3)
m=2

/#

(iil) M, equations (p =2,...,. M, + 1)

2 M;
Cane Ry, m+p—2
TB(]? Hie + aneBp-1)2 <R2 ) g Fp-nulz E gy E ( m]—) 1 )Bmkijkj(Zé’) =0

k=1 m=2
1#

(iv) M, — 1 equations (p=1,..., M, — 1)

C R p+l1 N 2
122/3 (p+1)2 — am(éj) B_priyie + ZF(,H)M(Z/')Z (2aw; — asi;)pFa(z0) Box

— =
Yo,
m+p— m+ ——m+ Zp—z;
v 3p(" 0 VB (e + B - 222 )
Y
M m+p S — gt (g% — 6% —2i6X), p=1
—+ J— . Bm Fm . — 4pn w xx Xy
(@i a3k]); <m+ 1) I +z>k,(zz)} {0’ b2

(v) the equation

J

No2M

Cooy Ry

— Boxe + (2an 031/)301/<R2€> - Zalk/Z[ ko (20) B Fouty (2 )}
il

k=1 m=

K+1<DOJr x)
= — o o
4p xx w

1293

(24)

(26)
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(vi) M, equations (p =2,...,M,+ 1)

c R R R\’ _
372[3@ 02 + (a11e — aze)Bp-1n (R;Z> palu(R;5> [(R_;j) - 11 B_(p-1e

2
- ZF@ 1)2¢ Zj Zalka <m +I_) 1 >BmkjEnkj(Z() =0 (28)
/#

m=2

where the binomial coefficients are defined as

n n!
_ 29
<m) m!(n — m)! (29)
By writing these equations for £ = 1,..., N and separating real and imaginary parts, we get finally the
real system of ZZ/\;I n, (where n, is given by (21)) linear algebraic equations
AX=D (30)
The matrix of this system has the following form
An o A
A= (31)
Ayt - Awy

where Ay is submatrix (22). The submatrix Ay (j # £) of dimension (n, x n;) is a full submatrix that ex-
presses the influence of the jth inclusion on the /th inclusion. The vector of unknowns X and the right-hand
side vector D can be written as
X D,

Py D= (32)
Xy Dy
where subvectors X, and D, are given by (17) and (20).

The system (30) can be solved by using a Gauss—Seidel iterative algorithm (Golub and Van Loan, 1996).

The number of terms M, of the complex Fourier series can be determined during the external iterative
procedure in the same manner as described in Mogilevskaya and Crouch (2001).

7. Calculation of the displacements, stresses, and strains

The Kolosov—Muskhelishvili potentials ¢(z) and (z) can be obtained by substituting (10) into (8).
Again, all the integrals can all be calculated analytically. Letting

M;
Quj(z) = @Ry Y B iiFin1)i5(2)/(m — 1)
m=2
Qo4j(2) = awy [(Rk/Flk/ )} ZBﬂnkj ki (2) + (2aiy — ask;)BokiRiiFiij(z) (33)

m=2

S

+ (auj-as))Ri Y  BukiFimi1wi(2)/(m + 1)

m
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and neglecting constant terms, the final expressions for the potentials can be written as follows
(1) the evaluation point is inside an inclusion (e.g. |z — z/| < Ry()
2py, : -
0(z) = Z @Ry ZBmu/ m+ 1) Fin(z)] + Z Quy(2) > (2)
kit 145 m=0
jzh
- 2ty 2
Y(z) = — p—— Z avie[RieFire(2) + Z7] ZBmké/kaL’( ) (34)
1¢ m=1
+ (@3ke — @) Rie ZBfka’/ [(m — 1)Fl1yie(z Z Q(2) > (2)
jzh
(i) the evaluation point is inside an interphase (e.g. Ry, < |z — z¢| < Ry)
(p(z) = 2#25 aW;R]/ f:B 1/F 1 1/(2)/(1’)1— 1)
K'Qg—f—l 4 .m:z —m1L (m—1)1¢
+ aeRy Z BmZL’/ m 4+ 1) Fiiy(z + Z Z Qu(2) p + 0™ (2)
m=0
/#/
21t (35)
Y(z) = p _’_’1 (2a110 — azi0)BorRieF116(2) + ane[RicFie(z) + Z7) ZB meFmie(z)
20 m=2
M
— a120[RoeFi2(2) + 22 ZBmzz/szz( )+ (a1 — azie)Ry ZBmMF(mH)w(Z)/(m +1)
m=1 m=1

m=2 =1 k=1
#

N 2
+ (@120 — azy RZ/ZBfanI/ (m — 1) Fu1y2(z Z Z 2 (2 v (z)
¢

(ii1) the evaluation point z is inside the matrix

by N2 (36)
Ve =g D D () H ()
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The displacements and stresses inside the inclusions, interphases, and the matrix can be calculated by
using formulae (7), (34)-(36), and (9). The complete expressions are given in Appendixes A and B.
The strains inside the inclusions, interphases, and the matrix can be found from the following relations

1— 2\14
€ T Ey = B (Gxx + O-yy)
Hy | (37)
v — Exx 2.x - y — Uxx 2 X
&y — €x + 2i€y, o (0,y — Ox + 2i0y,)

where v, and y, are defined as at the end of Section 3.

8. Numerical examples
8.1. Single inclusion

We showed in Section 5 that our approach gives the analytical solution for the case of a single inclusion.
Nevertheless, we perform numerical simulations for this simple case to study two different interphase re-
gimes described by Benveniste and Miloh (2001): a spring type interphase and a membrane type interphase.

Consider a circular inclusion of unit radius (R = 1) centered at z=0 and let the thickness of the
interphase be 4. Benveniste and Miloh (2001) represented a thin interphase by a curve separating the fiber
and the matrix, and, depending on the interphase properties, showed that seven distinct regimes exist when
the parameter ¢ = h/L < 1 (L is a typical radius of curvature for the curve representing the interphase). We
assume that e (in our case € = /R = h) is equal to 10~3. We suppose for simplicity that the Poisson’s ratios
of the fiber, matrix, and interphase are the same: Vper = Vmatix = Vinterphase = 0.35. For the shear moduli we
assume that Ugpe/tmarix = - The dimensionless Lamé parameters of the interphase introduced by Ben-
veniste and Miloh (2001) are defined as

(iintcrphagc, Minterphase) = (ﬂvmtcrphasc, :uinterphase)/()‘o =+ 2#0)

where
;“0 = (/lﬁber + ﬂvmatrix)/zq Hy = (,uﬁbcr + :umatrix)/2

8.1.1. Spring type interphase
In this case the tractions are continuous through the interphase and jumps of the normal and shear
components of displacement are proportional to the corresponding components of traction, i.e.

Aug = n,0,, Au, = 1,0, (38)

Benveniste and Miloh (2001) showed using an asymptotic analysis that a spring type interphase exists when
the following conditions are satisfied

;Linterphase ~ € iaimerphase ~ € (39)
Following Hashin (1990, 1991) they express the coefficients 5, and 5, via interphase parameters as follows

Ny = h/luinterphasm My = h/(;binterphase + Zuinterphase) (40)

We solve the problem of a single inclusion under uniaxial tension parallel to the x axis using the ap-
proach explained in Section 5. To satisfy (39) we take

tuimerphase/:umalrix =13 x 1073
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For comparison with Benveniste and Miloh (2001) we define the jumps in the normal and shear compo-
nents of displacement and traction as the following differences between their values on the boundary of the
interphase L, and the boundary of the inclusion Z; (note that in our analysis the displacements and trac-
tions are continuous throughout the interphase):

Ao, = an\Lz —0ulys Aos=al, —osl,  Auy =, —wl,  Aug =, —ul;, (41)

In the problem under consideration we find that zero traction jump conditions are satisfied to within 3
decimal places. Using (40) we also find that 7, = (3R/169) / tawsix»> 1s = (R/13)/ Unausix- Plots of Aug, 17,6, and
Au,, n,0, are shown in Fig. 2, from which we conclude that the spring type conditions (38) are well satisfied.

Note that if we solve the same single inclusion problem using the approach from Mogilevskaya and
Crouch (2002) (i.e. assuming that (a) the thickness of the interphase layer is neglected, (b) tractions are
continuous across the interphase, and (c¢) spring type conditions (38) are enforced along the boundary of the
inclusion) we will get results that are within plotting accuracy of ones plotted in Fig. 2.

8.1.2. Discussion of the problem of overlapping

It can be concluded from Fig. 2 that the normal displacement jump Au, is negative along some parts of
the boundary (i.e. when 70° < 0 < 90°). This means that if the thickness of the interphase is neglected, the
fibers and matrix overlap along these parts. This physically unrealistic behavior is considered as the main
shortcoming of the spring type interface model. It is therefore of interest to see whether the present model
with an interphase layer will eliminate the overlapping.

In the example considered above, Au, reaches its minimum at the point 6 =90° where
Au, =~ —3.07 x 107> = —3.07 x h. Thus, overlapping still takes place even if the interphase layer is present.

0.04 —
- nnc}'l
- x  Au,
0.02 —
0.00

-0.02

—006 T | T | T | T | T | T |
0.0 15.0 30.0 45.0 60.0 75.0 90.0
0

Fig. 2. Spring type interphase.
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On the other hand, one could always prevent the overlapping by proportionally increasing the interphase
thickness 4 and shear modulus f,eerphase DY @ factor of 3.07 (so that conditions (39) are still satisfied).
Another way of preventing overlapping is by proportionally reducing the load. Note that for the spring
type interface model (when the thickness of the interphase is neglected) those procedures would not prevent
overlapping but just decrease its amplitude.

In conclusion, the problem of overlapping is not completely eliminated by introducing the interphase
layer, but the phenomenon can be attributed to rather extreme cases of interphase conditions. It should be
noted that for practical problems of coated inclusions these extreme conditions are not likely to occur.

8.1.3. Membrane type interphase

In this case the displacements are continuous through the interphase and jumps of normal and shear
components of traction satisfy the following conditions (written here for the particular case of a circular
boundary)

O
aSO

where ¢ is the circumferential strain at the interphase boundary from the interphase side, s, is arc length
and

A()’n = PS(;g, AO’X =-P (42)

P— 2:uinterphase h

1- Vinterphase

0.8 —
0.6 —
0.4 —
0.2 —

0.0

- - Ao,
o — Pogy, /0s,

-0.2 —

-0.6 — T T T T T
0.0 15.0 30.0 45.0 60.0 75.0 90.0
0

Fig. 3. Membrane type interphase.
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According to Benveniste and Miloh (2001), such an interphase exists when

j-interphase ~ 1/6a ﬂinterphase ~ 1/6 (43)

We again solve the problem of a single inclusion under uniaxial tension along the x axis using the ap-
proach explained in Section 5. To satisfy (43) we take

:uinterphase/:umatrix =13 x 103

We calculate the jumps in the normal and shear components of displacement and traction using (41), as well
as expressions for Pey and —P0eyy/0sy. The jumps in the displacements are found to be zero to within 4
decimal places. The results of the comparisons of Pey) and —P0gyy/0sp with Ag, and A, are shown in Fig. 3,
where it can be seen that the membrane type conditions (42) are accurately represented.

8.2. Two inclusions

To study the interaction between inclusions with interphases we consider first a case of two coated
copper inclusions inside an infinite epoxy matrix (Fig. 4). The properties of the inclusions and matrix are
taken from the paper by Al-Ostaz and Jasiuk (1996), who considered the plane stress case. Both inclusions
have radius R = 3.2 mm and are centered along the x axis. A uniaxial stress o,, = 09 = 3.39 MPa is applied
at infinity. In our calculations we assume plane strain conditions. The elastic properties of the inclusions,
coatings, and matrix (transformed for the plane strain case) are listed in Table 1.

Following Al-Ostaz and Jasiuk (1996) we suppose first that the thicknesses of the interphases are the
same for both inclusions (0.8 mm) and the distance between their centers is 11.2 mm. Calculations are
performed for the cases of stiff and compliant coatings as well as a reference case of a perfectly bonded
inclusion without an interphase (i.e. the elastic properties in the coatings are the same as in the matrix). The
accuracy parameters 0; and d, used by Mogilevskaya and Crouch (2001) for the Gauss—Seidel and external

Fig. 4. Two inclusion under uniaxial tension ¢}; = go.
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Table 1

Elastic properties of the inclusions, coatings and matrix
Material y E (MPa) E /Ematix
Inclusion 0.2537 112220.22 38.9
Matrix 0.2647 2884.63 1
Compliant coating 0.2647 193.27 0.067
Stiff coating 0.2647 57692.64 20.0

iterative algorithms are chosen as 107° and 1073, respectively. The number of terms in Fourier series (the
same for both inclusions) needed to achieve the chosen accuracy was equal to 9 to for the case of perfect
bonding, 6 for the compliant coating, and 9 for the stiff coating.

Al-Ostaz and Jasiuk (1996) presented results for these problems in the form of the maximum normalized
effective stress aer /00 = [(0, — 009)2 + 02 + a3+ 6039]1/ : / (\/500) in the matrix, inclusions, and coatings. It
is not feasible for us to make a direct comparison with their calculations for two reasons. First, Al-Ostaz
and Jasiuk placed the inclusions in a finite plate of dimension 3R x SR whereas we have used an infinite
region. Second and more important, they did not specify the points where the maximum values of g/
were calculated. Instead of a direct comparison, we present the distribution of a.r/g( along the x axis for
the different types of coatings (Fig. 5). Due to symmetry, the results are presented for x > 0.

One can see from Fig. 5 that, compared to the case of a perfect bond, a stiff coating increases the effective
stresses inside the inclusion (2.4 mm < x < 8.8 mm), except for a small area in its center where a small
relaxation zone exists. Effective stresses in the coating (1.6 mm < x < 2.4 mm and 8.8 mm < x<9.6 mm)
are much higher than for the perfect bond case; the effective stresses in the matrix are relaxed. For the case

2.5 |
»
N ° — perfect bond L
. + stiff coating .
2.0 = .. % ® compliant coating é .
° L]
R=| g . °
Looe” = .
- .
1.5 — .
L]
..
++ %
Gejf 7 +++ ++
matrix |+ inclusion + | matrix
1.0 - - +
.y + ¥
+++ +++
- * &
+ ++
++ f/\“““ﬁ.‘. ++
f
0.5 — ++ - .°'. ++
+ *
*
o~ ot
.. '
0.0
I 1T 1T 1T T T 1 [

0.0 0.8 1.6 2.4 3.2 40 48 56 6.4 7.2 8.0 8.8 9.6 10.411.2

Fig. 5. Distribution of or/0o along axis Ox.
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of a compliant coating the results are reversed: the effective stresses in the inclusion and coating are relaxed,
and are concentrated in the matrix near matrix—coating boundary. Qualitatively these results agree with
these reported by Al-Ostaz and Jasiuk (1996).

To characterize the global behavior of the stress fields we present contours of the normalized principal
stress difference (o, — 0;)/0o (twice the magnitude of the normalized shear stress) for the cases of different
coatings (Figs. 6-8). Due to symmetry, the results are presented for x = 0, y = 0. One can see that in the
case of a perfect bond the load is mostly carried by the inclusions. A compliant coating releases the stresses
inside the inclusions and coatings, and the matrix carries most of the load. A stiff coating increases the
stresses in the inclusions and coatings, and the maximum normalized principal stress difference is located
near the inclusion—coating boundary.

Fig. 9 shows contours of the normalized principal stress difference (o, — 0;)/0¢ for the case when
inclusions with stiff coatings are near touching (the distance between the centers of the inclusions is equal to
8.2 mm). The number of terms in the Fourier series for this case is equal to 23 for both inclusions (the
parameters ¢; and J, are taken to be the same as above). Fig. 10 illustrates the effect of interactions of the
inclusions with the different coatings and interphase thickness. The left and right inclusions have stiff and
compliant coatings, respectively. The distance between the centers of the inclusions is equal to 8.2 mm. The
thickness of the interphase for the left inclusion is 0.8 mm and for the right one is 0.4 mm. The number of
terms in Fourier series for this case is equal to 16 for the left inclusion and 13 for the right one. Due to
symmetry, the results are presented for y > 0.

Fig. 6. Contours of (o, — a2)/ao for two perfectly bonded inclusions.
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Fig. 7. Contours of (g, — g;)/0y for two inclusions with compliant coatings.

8.3. Equally spaced multiple inclusions

Consider a finite square array of / x / inclusions shown in Fig. 11. All the inclusions (fibers) have the
same radii R;; = 8.5 um (j = 1, ..., /). The radii of the interphases are also all the same (R, = 9.5 pm). The
volume fraction of the fibers is equal to 0.50 (the distances 2L between their centers are equal to 21.30634
um). We take the elastic properties of the constituent materials as follows (we assume plane strain con-
ditions and consider the case of four different Young’s moduli for the interphases):

Eﬁber =84.0 Gpa, Viber — 0.22
Einterphase =4.0-12.0 GPa, Vinterphase — 0.34
Ernarix = 4.0 GPa,  vpauix = 0.34

An infinite array with the same properties was considered by Wacker et al. (1998) (finite elements) and
Liu et al. (2000) (boundary elements), who used a unit cell approach. These authors assumed macro-
isotropic behavior of the equivalent homogeneous material (characterized by two elastic constants: effective
Young’s modulus E.; and effective Poisson’s ratio ver) and studied the effect of variations in Ejyierphase ON
E.. In the approach by Wacker et al., the boundary of the unit cell was subjected to displacement
boundary conditions and E.; was calculated using the fact that the strain energy of a composite material is
equal to the strain energy of an equivalent homogeneous one. A mesh of 1834 linear triangular elements
was used to model one quarter of a unit cell.
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> >
~

Fig. 8. Contours of (g, — g;)/0y for two inclusions with stiff coatings.

Liu et al. calculated E.r from average stress—strain relations along the edge of a unit cell perpendicular to
the direction of an applied uniaxial tension at infinity. They used two types of boundary conditions for the
unit cell: BEM [—traction free conditions (g, = o, = 0 along edges parallel to the applied remote tension)
and BEM 2—straight line conditions (the edges parallel to the applied load remain straight after defor-
mation). The boundary element mesh involved 64 quadratic boundary elements—16 elements for each
circular boundary and 32 elements for the straight boundaries.

Taking different values of /, we used our approach to compute the stress and displacement distributions
in the basic cell (—L <x <L, —L <y<L) of a finite array. Analysis of the displacement distribution along
the boundaries of the basic cell showed that displacements at the edges parallel to the applied load were
constant to within 4-6 digits when / > 11. The parameters ¢, and J, (Mogilevskaya and Crouch, 2001) for
the Gauss—Seidel and external iterative algorithms were chosen as 10~ and 1073, respectively. The algo-
rithm converged within the specified accuracy with between 14 and 16 terms in the Fourier series,
depending on the interphase properties. Using the assumption of macro-isotropic behavior of the equiv-
alent homogeneous material we calculated the elastic constants of the equivalent homogeneous material.
E.¢ was calculated from average stress—strain relations along the edge x = L, —L <y < L. Table 2 shows the
comparison between our results (with / = 11) and the ones obtained by Wacker et al. (1998) and Liu et al.
(2000). Our results agree better with finite element ones.

Table 3 shows the variation of E.¢ with the interphase properties (Young’s modulus and thickness). It is
worth mentioning that the interphase thickness does not introduce any singularity in the present approach.
The number of terms in Fourier series remains of the same order as the interphase thickness decreases.
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Fig. 10. Contours of (g, — 62)/00 for two inclusions with stiff (left) and compliant (right) coatings.

8.4. Random multiple inclusions

The final example shows the use of our approach for the solution of problems with multiple randomly
distributed coated inclusions. Fig. 12 shows contours of 6; — a5 in a plane with 30 coated inclusions (volume
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Fig. 11. Rectangular array of inclusions.

Table 2

Variation of Egy With Eiyerphase (comparison with BEM and FEM)
Einterphase (GPa) BEM 1 BEM 2 FEM Current approach
4.0 11.61 11.61 12.25 12.09
6.0 13.18 13.02 13.71 13.68
8.0 13.97 13.89 14.68 14.67
12.0 15.04 14.93 15.91 15.84

Table 3

Variation of E.y with the interphase properties (Einerphase and Ra; — Ry;)
Einlerphase (GPa) RZ/ - Rl_/' (Hm)

1.0 0.5 0.1 0.01

4.0 12.09 12.09 12.09 12.09
6.0 13.68 12.86 12.24 12.10
8.0 14.67 13.29 12.32 12.11
12.0 15.84 13.76 12.40 12.12

fraction 0.53) subjected to uniform uniaxial tension ¢2° = 1.0. The Poisson’s ratios of the inclusions, matrix,
and the coatings are the same: Vicusion = Vmatrix = Veoating = 0.2. All the inclusions are stiff
(Kincusion/ Mmarix = 10). Two types of coatings are present: Stiff (iooaeing/Mmarix = 2) for 23 inclusions and
compliant (Ueoating/ Mmawix = 0-5) for 7. The numbers of terms in the Fourier series for the inclusions varied
from 10 to 21 (with §; = 107% and §, = 1073). The solution of this problem took less than a minute on a 2 GHz
PC. The small number of the inclusions in this example was chosen merely to provide convenient visual
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Fig. 12. Contours of ¢; — ¢, for 30 randomly distributed coated inclusions subjected to uniaxial tension at infinity (¢3¢ = 1.0).

presentation of the results. The approach can be used to solve much more complicated problems with hun-
dreds or thousands of inclusions.

9. Conclusions

In this paper we extend a recently developed numerical technique for solving the problem of an infinite
elastic plane containing a large number of circular elastic inclusions to the case of inclusions with homo-
geneous uniform interphase layers. The method allows one to solve problems involving numerous inclu-
sions with arbitrary elastic properties, sizes, and interphase thicknesses. The only restrictions are that the
interphases (and inclusions) may not overlap and that perfect bonding is assumed to exist between the
interphases, the inclusions, and the material matrix. The test results obtained with the approach agree well
with analytical and numerical solutions available in the literature. The main advantage of the approach is
that apart from round-off the only errors introduced into the solution are due to truncation of the Fourier
series used to approximate the unknown tractions at the inclusion—interphase and interphase-matrix
boundaries. Compared to finite element and boundary element solutions of similar problems, our approach
requires relatively few of degrees of freedom to model inclusions with very thin interphases. It is shown that
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the problem of overlapping of fibers and matrix, though not completely eliminated in present model, can be
attributed to rather extreme interphase conditions. Natural future developments of the approach include
the extension to problems with radially graded interphases.

Appendix A. Stresses at internal points

Using the notation

Zlkj = Aikj E Bfmkj mkj
m=2

m z
2okj(2) = Bowj(as; — 2au;)Far(z) + argy ZBfmk/ F+1(Z 5@ _ (m + 1)Fpia(2) (A.1)
1k

m=2

M;
a3kj_a1kj E Bmk] m+2/q

it can be shown that the stresses 1n51de the /th inclusion are

S LO M [ SLATLNEE WG

K1y =+ 1
J'#
o + 1) ( i~ oo)
—— o> +o0
(i + 1) Y
(o) — (o), + 2i(o), = S~ %B e
wle xx )¢ xy )¢ K1/ +1 < 1kt Z mkt (m lkg( )Flk[( ) Fv(mfZ)kZ(Z) (A2)

+ (e — s ZBfmké/Fm weelz) + ZZZk/

m=2
#13
1
+ M (a — oy + 2oy )
pu(re + 1)
the stresses inside the ¢th interphase are
8
(0w), + (0), = — 2L_Re |an ZBfmlllel —aiy ZBmzz/szz z)
Ko + 1 m=2 m=0

2 N
—I—Z ZZ”‘J —ﬂzf(K+1)(0§j+afj)

k=1 plrea + 1)

\H\H
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. 4
(0y); = (Ox), + 2i(0y), = = Boe(azie — 2a110)Fo1e(2)
Ko+ 1
My
MF i 1)10(2)
+ane Y B | ———=—— (m+ 1)F21(2)
mZ:; Fii(2)
M
+ (azie — aie) ZBmuF(m+2)1z(Z) (A.3)
m=1
<l m m—1
+aie ) B -
; Fin-1y2(z VF2(z)  Flin-22(2)
+ZZZ M(om—a“—i—ﬁa“)
26\ 2 KZI + 1) W xx Xy
/#

and the stresses o,,, g,,, and o,, in the matrix are

O+ 0y = —%Rez ZZW(Z) + (a;f —l—a‘;;)

. by K .
Gy — Op + 2i0,, = K Z Z () + (a}"; - + 210}’5)

Appendix B. Displacements at internal points

Using the notation

2 N M;
A Fim-1yt(20)
Gy = ; Z lBij(a3kj — 2a1;)RiFj(z0) — ay Z;B—mkjﬁ
= O o
it
Zy—Zj
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m=2 2= J
Y F, (z0) K+1 K+1
(m+1)kj\=t 00 00 00 00 s 00 \=—
+ (aa — awy) ;Bmkj p” +/1 T (% + %)Zé’ T an (% — Oy~ 21%)“ (B.1)
and
5
Ayj(z,10) = Bowj(ass; — 2a1;) RijFuij () + rpan; ZB—mk/ o ika/( 2)

m=2

I M; IR
N —————(z—2z) — RyFu(2) - Flni1y(2)
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m= j m=
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it can be shown that the displacements inside the ¢th inclusion are

1
Bow (10 — Dz — z) + k1R By,
oe(r1e = 1)(z = z0) + K10 ”Z “m 4+ 1) i (2)

2
E Alke
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M RiuFy z—z d
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and the displacements in the matrix are
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