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Abstract

The paper presents a numerical method for solving the problem of an infinite, isotropic elastic plane containing a

large number of randomly distributed circular elastic inclusions with uniform interphase layers. The bonds between the

inclusions and the interphases as well as between the interphases and the matrix are assumed to be perfect. In general,

the inclusions may have different elastic properties and sizes; the thicknesses of the interphases and their elastic

properties are arbitrary. The analysis is based on a numerical solution of a complex singular integral equation with the

unknown tractions at each circular boundary approximated by a truncated complex Fourier series. The Galerkin

technique is used to obtain a system of linear algebraic equations. The resulting numerical method allows one to

calculate the elastic fields everywhere in the matrix and inside the inclusions and the interphases. Using the assumption

of macro-isotropic behavior in a plane section one can find the effective elastic moduli for an equivalent homogeneous

material. The method can be viewed as an extension of our previous work (Int. J. Solids Struct. 39 (2002) 4723) where

simpler spring-like interface conditions were modeled. The problem of overlapping of the fibers and matrix inherent to

spring type interface is discussed in the context of the present model. Numerical examples are included to demonstrate

the effectiveness of the new approach.
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1. Introduction

This paper is concerned with two-dimensional modeling of multiple nonoverlapping circular inclusions

(fibers) with uniform interphases. Fiber-reinforced composite materials are a natural and important

application of this model. We idealize the fibers as uniform, infinite circular cylindrical inclusions that are

connected to the matrix through uniform coaxial bands or interphases. The elastic properties of the in-

terphases are different from those of the fibers and the matrix.

There are several reasons why interphases are present in fiber-reinforced composites. In some materials

interphases are the result of coating of the fibers with soft polymers in order to reduce high stresses at the
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fiber–matrix interfaces and enhance the toughness of the composite (Crasto et al., 1988; Subramanian and

Crasto, 1986; Mascia et al., 1993; Nassehi et al., 1993a,b). The interphases may also appear as a result of

damage around the fibers in forms of voids, micro-cracks, and other defects (Theocaris, 1987). They may

also appear due to chemical reaction or diffusion during the manufacturing process (Lagache et al., 1994;
Lutz and Zimmerman, 1996). In any case, the presence of interphases significantly affects the properties of

composite materials and needs to be taken into account in numerical modeling.

Numerous papers have been written on the effects of interphases on the micro- and macro-mechanical

behavior of fiber-reinforced composite materials (see, for example, Aboudi, 1987; Achenbach and Zhu,

1989, 1990; Benveniste et al., 1989; Benveniste and Miloh, 2001; Bigoni et al., 1998; Bigoni and Movchan,

2002; Christensen and Lo, 1979; Hashin, 1990, 2002; Jasiuk and Kouider, 1993; Theocaris, 1987). Ana-

lytical and semi-analytical treatments of the problem are limited to the cases of a single inclusion or a pair

of inclusions (Kouris, 1993; Ru, 1998, 1999; Ru and Schiavone, 1997; Sudak et al., 1999; Sudak and
Mioduchowski, 2002). The finite element method is the most common numerical tool for modeling fiber-

reinforced composites with imperfect interphases (Nassehi et al., 1993a,b; Lagache et al., 1994; Al-Ostaz

and Jasiuk, 1996; Wacker et al., 1998) and has been used to model both uniform (Al-Ostaz and Jasiuk,

1996; Lagache et al., 1994) and nonuniform (Wacker et al., 1998) interphases. To avoid large numbers of

degrees of freedom in the modeling, these authors employ the concept of a unit cell, but even with this

assumption the method is computationally intense, especially for problems involving inclusions with thin

interphases.

Boundary element simulations of composite materials with interphases are rather limited. The most
common approach is to use the simplest case of a spring type interphase (Achenbach and Zhu, 1989, 1990;

Zhu and Achenbach, 1991; Gulrajani and Mukherjee, 1993; Pan et al., 1998). In such a model the thickness

of the interphase is neglected, tractions are assumed continuous across the interphase, and the jumps of the

normal and shear displacements are taken proportional to the corresponding components of tractions.

Hashin (1990, 1991) showed that the spring type model corresponds to the case of a very thin and soft

interphase and developed relationships between the interface parameters for the spring type model and the

elastic properties of the interphase layer. Benveniste and Miloh (2001) showed that the spring type inter-

phase represents just one of several other possible interphase regimes. They proved that in case of a thin
interphase there are seven distinct regimes of interface conditions. Apart from a lack of generality, a dis-

advantage of the simple spring type model is that it may cause physically unrealistic overlapping of the

fibers and matrix under some loading conditions. To prevent overlapping a special iterative procedure

needs to be used (Achenbach and Zhu, 1989, 1990). All of the boundary element simulations mentioned

above used a unit cell approach and a periodic distribution of the fibers.

To our knowledge, the only boundary element paper where the interphase was regarded as an elastic

layer is the one by Liu et al. (2000). They presented a direct boundary element approach for cylindrical and

square unit cell models of the composites. The unit cell contained just one inclusion.
In a previous paper (Mogilevskaya and Crouch, 2002) we presented a new approach for solving two-

dimensional problems involving a large number of circular elastic inclusions with spring type interface

conditions. A similar approach has also been used for problems with multiple perfectly bonded inclusions

and holes (Mogilevskaya and Crouch, 2001; Wang et al., 2003, in press). The analysis is based on a

numerical solution of a complex hypersingular integral equation with the unknown displacement discon-

tinuities and tractions at each circular boundary approximated by a truncated complex Fourier series (a

real variables analog of this approach is presented in Crouch and Mogilevskaya (2003)). Infinite Fourier

series, in fact, provide the analytic solution for this class of problems; the only errors introduced in the
numerical model are due to truncation of the series and round-off. In the present paper we extend this

general approach to the problem of an infinite, isotropic elastic plane containing a large number of ran-

domly distributed circular elastic inclusions with uniform interphase layers. The bonds between the

inclusions and the interphases as well as between the interphases and the matrix are assumed to be perfect.
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The inclusions may have different elastic properties and sizes and the thicknesses of the interphases

and their elastic properties are also arbitrary. The approach allows one to calculate elastic fields everywhere

in the matrix and inside the inclusions and the interphases.
2. Problem formulation

Consider an infinite, isotropic elastic plane subjected to a biaxial stress field at infinity and containing N
circular elastic inclusions (Fig. 1). The inclusions are connected to the matrix through coaxial circular

interphase layers. The bonds between the inclusions and the interphases as well as between the interphases

and the matrix are assumed to be perfect. The shear moduli l1j and Poisson�s ratios m1j j ¼ 1; . . . ;N , of the
inclusions are arbitrary and are in general different from those of the matrix l and m or of the interphases l2j
and m2j, j ¼ 1; . . . ;N . The distances between the inclusions can be arbitrarily small (in particular, their
interphases may touch one another). Let R1j and L1j denote the radius and boundary of the jth inclusion,
and let R2j and L2j be the radius and boundary of the jth interphase. The center of the inclusion and its
interphase is located at the same point zj. The direction of travel is counterclockwise for all the boundaries
L1j and L2j. The unit normal n points to the right of the direction of travel; the unit tangent s is directed in
the direction of travel. The distribution of displacements and stresses in the composite solid are to be

determined.

The system of inclusions is in equilibrium and it follows that the resultant force and moment on the
boundary of each inclusion (j ¼ 1; . . . ;N ) and interphase are equal to zero. The mathematical expressions
for these conditions can be written as follows (Muskhelishvili, 1959)
Z
Lkj

rkjðsÞds ¼ 0; k ¼ 1; 2 ð1Þ
Fig. 1. Problem formulation.
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Re

Z
Lkj

srkjðsÞd�s ¼ 0; k ¼ 1; 2 ð2Þ
where rkjðzÞ ¼ rkjnðzÞ þ irkjsðzÞ, in which rkjnðzÞ and rkjsðzÞ are the normal and shear tractions on contour
Lkj, z ¼ xþ iy is complex coordinate of a point ðx; yÞ in the global Cartesian coordinate system (xOy) in a
plane, and i ¼

ffiffiffiffiffiffiffi
�1

p
.

3. Boundary integral equation

As in our previous papers (Mogilevskaya and Crouch, 2001, 2002; Wang et al., 2003, in press) we use the

complex hypersingular boundary integral equation originally developed by Linkov and Mogilevskaya

(1994), which is valid for the more general problem of an infinite plane or a finite body containing cracks,

cavities, and inclusions of arbitrary shapes. For the particular case considered here, the terms containing

hypersingular integrals (these involve displacement discontinuities on the boundaries Lkj, k ¼ 1, 2) vanish
and the equation is singular. The resulting equation can be written as follows
XN
j¼1

X2
k¼1

ð2a1kj

"
� a3kjÞ

Z
Lkj

rkjðsÞds
s � t

þ ða1kj � a3kjÞ
Z
Lkj

rkjðsÞ
o

ot
K1ðs; tÞds þ a1kj

Z
Lkj

rkjðsÞ
o

ot
K2ðs; tÞd�s

#

¼ 2pi a2k
2

rðtÞ
h

þ r1ðtÞ
i

ð3Þ

where t 2 [N

j¼1ðL1j [ L2jÞ, k ¼ 1; 2,

a2k ¼ a2kj
rðtÞ ¼ rkjðtÞ

�
if t 2 Lkj ð4Þ

a11j ¼
1

2l1j
� 1

2l2j
; a21j ¼

1þ j1j
2l1j

þ 1þ j2j
2l2j

; a31j ¼
1þ j1j
2l1j

� 1þ j2j
2l2j

; a12j ¼
1

2l2j
� 1

2l
;

a22j ¼
1þ j2j
2l2j

þ 1þ j
2l

; a32j ¼
1þ j2j
2l2j

� 1þ j
2l

ð5Þ

r1ðtÞ ¼ � j þ 1
4l

r1
xx

"
þ r1

yy þ
d�t
dt

ðr1
yy � r1

xx � 2ir1
xy Þ
#

ð6Þ
r1
xx , r

1
yy , and r1

xy are the stresses at infinity; j ¼ 3� 4m for plane strain; j ¼ ð3� mÞ=ð1þ mÞ for plane stress; a
bar over a symbol denotes complex conjugation; d�t=dt ¼ expð�2icÞ where c is the angle between the axis Ox
and the tangent at point t; and
K1ðs; tÞ ¼ ln
s � t
�s ��t

; K2ðs; tÞ ¼
s � t
�s ��t
The components of the stress tensor rxx, ryy , and rxy and the displacements uðzÞ ¼ uxðzÞ þ iuyðzÞ at any
point z inside the inclusions and matrix can be calculated from two complex functions uðzÞ and wðzÞ by
using the Kolosov–Muskhelishvili formulae (Muskhelishvili, 1959)
2luðzÞ ¼ juðzÞ � zu0ðzÞ � wðzÞ
rxx þ ryy ¼ 4Reu0ðzÞ

ryy � rxx þ 2irxy ¼ 2 �zu00ðzÞ
h

þ w0ðzÞ
i ð7Þ
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The Kolosov–Muskhelishvili potentials can be expressed in terms of integrals of the boundary tractions as

follows (Mogilevskaya and Crouch, 2001)
uðzÞ ¼ � l‘

piðj‘ þ 1Þ
XN
j¼1

X2
k¼1

a1kj

Z
Lkj

rkjðsÞ lnðs � zÞds þ u1ðzÞ

wðzÞ ¼ � l‘

piðj‘ þ 1Þ
XN
j¼1

X2
k¼1

a1kj

Z
Lkj

rkjðsÞ
�sds
s � z

"
þ ða3kj � a1kjÞ

Z
Lkj

rkjðsÞ lnðs � zÞd�s
#
þ w1ðzÞ

ð8Þ
where l‘ and j‘ are the elastic constants of the ‘th inclusion if jz� z‘j6R1‘, the ‘th interphase if
R1‘ < jz� z‘j6R2‘, or else l‘ ¼ l, j‘ ¼ j if z is a point of the matrix, and
u1ðzÞ ¼ l‘ðj þ 1Þ
lðj‘ þ 1Þ

r1
xx þ r1

yy

4
z

w1ðzÞ ¼ l‘ðj þ 1Þ
lðj‘ þ 1Þ

r1
yy � r1

xx þ 2ir1
xy

2
z

ð9Þ
In writing (8) we have neglected constant terms in each expression. It is clear from (7) that these

terms would only affect the expressions for the displacements. The missing constants in expressions (8)

can, if desired, be found from the conditions of the continuity of the displacements across each boundary
Lkj.
4. Numerical solution

In order to solve (3), we represent the unknown tractions rkjðsÞ at each boundary Lkj by a truncated

complex Fourier series of the form
rkjðsÞ �
XMj

m¼1
B�mkjFmkj þ

XMj

m¼0
Bmkj=Fmkj; s 2 Lkj ð10Þ
where
FmkjðsÞ ¼
Rkj

s � zj

	 
m

ð11Þ
It will be seen from the subsequent derivations that the number of terms in the truncated Fourier series

must be the same for L1j and L2j. We note, however, that this number need not be the same for all the
individual inclusions.

By substituting the expression (10) into equilibrium conditions (1) and (2), we find that
B�1kj ¼ 0; B0kj are real ð12Þ
for all j ¼ 1; . . . ;N and k ¼ 1, 2.
The complex coefficients B�mkj (m ¼ 1; . . . ;Mj) and Bmkj (m ¼ 0; . . . ;Mj) in series (10) need to be deter-

mined.

All integrals involved in (3) can be evaluated analytically similarly to the case of perfectly bonded
inclusions (Mogilevskaya and Crouch, 2001). By substituting the corresponding expressions for those

integrals into Eq. (3) we obtain the following system of equations:
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(i) t 2 L1‘
� c11‘
2

XM‘

m¼2
B�m1‘Fm1‘ðtÞ þ

c21‘
2

B01‘ þ
c31‘
2

XM‘

m¼1
Bm1‘=Fm1‘ðtÞ � ða12‘ � a32‘Þ

XM‘

m¼2
B�m2‘

R1‘
R2‘

	 
m�2

Fm1‘ðtÞ

þ 2a12‘B02‘ þ a12‘
XM‘

m¼1
Bm2‘=Fm2‘ðtÞ � a12‘

XM‘

m¼1
ðm� 1ÞBm2‘

R1‘
R2‘

	 
m

1

	
� R22‘
R21‘



Fm1‘ðtÞ þ

X2
k¼1

XN
j¼1
j 6¼‘

N1kjðtÞ

¼ � j þ 1
4l

r1
xx

h
þ r1

yy � F21‘ðtÞðr1
yy � r1

xx � 2ir1
xy Þ
i

(ii) t 2 L2‘
� c12‘
2

XM‘

m¼2
B�m2‘Fm2‘ðtÞ þ

c22‘
2

B02‘ þ
c32‘
2

XM‘

m¼1
Bm2‘=Fm2‘ðtÞ � a11‘

XM‘

m¼2
B�m1‘Fm1‘ðtÞ

þ ð2a11‘ � a31‘ÞB01‘
R1‘
R2‘

	 
2
þ ða11‘ � a31‘Þ

XM‘

m¼1
Bm1‘

R1‘
R2‘

	 
mþ2
,

Fm2‘ðtÞ

� a11‘
XM‘

m¼2
ðmþ 1ÞB�m1‘

R1‘
R2‘

	 
m

1

	
� R21‘
R22‘


�
Fm2‘ðtÞ þ

X2
k¼1

XN
j¼1
j 6¼‘

N2kjðtÞ

¼ � j þ 1
4l

r1
xx

h
þ r1

yy � F22‘ðtÞðr1
yy � r1

xx � 2ir1
xy Þ
i

ð13Þ
where
c1k‘ ¼ 2a1k‘ þ a2k‘ � a3k‘; c2k‘ ¼ 4a1k‘ � a2k‘ � a3k‘; c3k‘ ¼ 2a1k‘ � a2k‘ � a3k‘
and
NpkjðtÞ ¼
(

� a1kj
XMj

m¼2
B�mkjFmkjðtÞ þ ð2a1kj � a3kjÞB0kjF2p‘ðtÞF2kjðtÞ þ ða1kj � a3kjÞ

XMj

m¼1
BmkjFðmþ2ÞkjðtÞF2p‘ðtÞ

þ a1kj
XMj

m¼2
B�mkj

"
� 1þ ðmþ 1ÞF2p‘ðtÞF2kjðtÞ � mF2p‘ðtÞ

t � zj
�t � zj

#
FmkjðtÞ

)

By writing this equation for all the inclusions, ‘ ¼ 1 to N , one gets a system of 2N complex algebraic

equations involving 2
PN

‘¼1ð2M1‘ � 1Þ complex coefficients B�mk‘ (m ¼ 2; . . . ;M‘, k ¼ 1, 2) and Bmk‘

(m ¼ 1; . . . ;M‘, k ¼ 1, 2), and 2N real coefficients B0k‘.
5. One inclusion

In the particular case of a single inclusion with the center z‘, Eq. (13) can be solved analytically because
both sides of this equation represent a truncated complex Fourier series. The two sides of the equation are
equal if and only if the corresponding complex coefficients for terms of the same power are equal. As a

result we get the following system of equations:
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(i) t 2 L1‘
� c11‘
2

B�m1‘ � ða12‘ � a32‘Þ
R1‘
R2‘

	 
m�2

B�m2‘ þ ðm� 1Þa12‘Bm2‘
R1‘
R2‘

	 
m�2

1

	
� R21‘
R22‘




¼
jþ1
4l ðr1

yy � r1
xx � 2ir1

xy Þ; m ¼ 2
0; m > 2

�
c21‘
2

B01‘ þ 2a12‘B02‘ ¼ � j þ 1
4l

r1
xx

�
þ r1

yy

�
c31‘
2

Bm1‘ þ a12‘
R1‘
R2‘

	 
m

Bm2‘ ¼ 0; m > 0

ð14Þ
(ii) t 2 L2‘
� c12‘
2

B�m2‘ � a11‘
R1‘
R2‘

	 
m

B�m1‘ ¼
jþ1
4l ðr1

yy � r1
xx � 2ir1

xy Þ; m ¼ 2
0; m > 2

�

c22‘
2

B02‘ þ ð2a11‘ � a31‘Þ
R1‘
R2‘

	 
2
B01‘ ¼ � j þ 1

4l
r1
xx

�
þ r1

yy

�
c32‘
2

Bm2‘ þ ða11‘ � a31‘Þ
R1‘
R2‘

	 
mþ2

Bm1‘ þ a11‘ðmþ 1Þ R1‘
R2‘

	 
m R1‘
R2‘

	 
2"
� 1
#
B�m1‘ ¼ 0; m > 0

ð15Þ
We see from expressions (14) and (15) that the coefficients B�m1‘, B�m2‘ and Bm1‘, Bm2‘ are involved in the

same equations of the system. This means that number of terms in the truncated Fourier series must be the

same for L1j and L2j. The solution of system (14) and (15) leads to the following expressions for the only

nonzero coefficients B�21‘, B01‘, B21‘, and B�22‘, B02‘, B22‘:
B�21‘ ¼
�ðj þ 1Þðr1

yy � r1
xx � 2ir1

xy Þða22‘ þ a32‘Þ
8lD

B01‘ ¼
ðj þ 1Þ r1

xx þ r1
yy

� �
ða22‘ þ a32‘Þ

2l c21‘c22‘ � 8a12‘ð2a11‘ � a31‘ÞR21‘=R22‘½ �

B21‘ ¼ �3a11‘a12‘
R1‘
R2‘

	 
2 R1‘
R2‘

	 
2"
� 1
#
B�21‘

,
K

B�22‘ ¼ � 2
ðj þ 1Þðr1

yy � r1
xx � 2ir1

xy Þ
4l

"
þ a11‘

R1‘
R2‘

	 
2
B�21‘

#,
c12‘

B02‘ ¼ �
ðj þ 1Þ r1

xx þ r1
yy

� �
c21‘ � 2ð2a11‘ � a31‘ÞR21‘=R22‘
� �

2l c21‘c22‘ � 8a12‘ð2a11‘ � a31‘ÞR21‘=R22‘½ �

B22‘ ¼ � c31‘
2a12‘

R2‘
R1‘

	 
2
B21‘

ð16Þ
where
K ¼ a12‘ða11‘ � a31‘Þ
R1‘
R2‘

	 
4
� R2‘

R1‘

	 
2 c31‘c32‘
4
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D ¼ c12‘
4

c11‘

8<
: þ 3c31‘a11‘a12‘

R1‘
R2‘


2 24 � 1
#2,

K

9=
;� a11‘ða12‘ � a32‘Þ

R1‘
R2‘

	 
2
Apart from notation this result agrees with the solution obtained by Ru (1999).

For future reference it is useful to rewrite a real analog of (14) and (15) in matrix form. We introduce the

vector of the unknowns as follows
X‘ ¼
X1‘
X2‘

� �
ð17Þ
where the subvector Xk‘, k ¼ 1 or 2, is defined as
XTk‘ ¼ ReB�M‘k‘; ImB�M‘k‘; . . . ;ReB�2k‘; ImB�2k‘;B0k‘;ReB1k‘; ImB1k‘; . . . ;ReBM‘k‘; ImBM‘k‘

 !
ð18Þ
A real analog of the system (14) and (15) can then be written in matrix form as
A‘‘X‘ ¼ D‘ ð19Þ
where the vector of the right-hand side D‘ has the form
D‘ ¼
D0
D0

� �
ð20Þ
in which the subvector D0 is the same as for an isolated perfectly bonded inclusion (expression (30) from

Mogilevskaya and Crouch, 2001).

The square matrix A‘‘ of dimension (n‘ � n‘) with
n‘ ¼ 2ð4M‘ � 1Þ ð21Þ
in (19) can be written as
A‘‘ ¼
A11ð‘Þ A12ð‘Þ
A21ð‘Þ A22ð‘Þ

� �
ð22Þ
where four square submatrices A11ð‘Þ, A12ð‘Þ, A21ð‘Þ, and A22ð‘Þ have the dimension 4M‘ � 1� 4M‘ � 1.
The diagonal submatrices A11ð‘Þ and A22ð‘Þ correspond to the cases of isolated perfectly bonded inclusions
(expression (32) from Mogilevskaya and Crouch, 2001): one with the radius R1‘ and the elastic properties of
the ‘th inclusion, and the other with radius R2‘ and elastic properties of the ‘th interphase. The submatrices
A12ð‘Þ and A21ð‘Þ are triangular and sparse. Taking into account that the matrix A‘‘ is sparse, a special

Gauss-elimination type procedure can be designed to invert A‘‘ with modest computational cost.
6. N inclusions

In the general case of N inclusions we use the Galerkin method (e.g. Brebbia et al., 1984) to get a linear
algebraic system. For the case when t 2 L1‘ (L2‘) we successively multiply both sides of Eq. (13) by the
powers ðt � z‘Þp p ¼ �ðM‘ þ 1Þ;�M‘; . . . ;�1; 1; 2; . . . ;M‘ � 1½ � and integrate over L1‘ (L2‘). The integrations
can again be done analytically similarly as in Mogilevskaya and Crouch (2001). This gives the following
systems of 4M‘ equations with respect to the unknown coefficients:
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(i) M‘ � 1 equations (p ¼ 1; . . . ;M‘ � 1)
�

�

c2
2

c3
2

�

c2
2

c11‘
2

B�ðpþ1Þ1‘ � ða12‘ � a32‘Þ
R1‘
R2‘

	 
p�1

B�ðpþ1Þ2‘ � pa12‘
R1‘
R2‘

	 
2"
� 1
#

R1‘
R2‘

	 
p�1

Bðpþ1Þ2‘

þ
XN
j¼1
j 6¼‘

Fðp�1Þ1‘ðzjÞ
X2
k¼1

ð2a1kj

(
� a3kjÞpF2kjðz‘ÞB0kj þ a1kj

XMj

m¼2
p

mþ p � 1
m� 1

	 

B�mkjFmkjðz‘Þ

F21‘ðzjÞ
mþ p
p þ 1

	�
þ F2kjðz‘Þ

mþ p
m

� z‘ � zj
z‘ � zj


�
þ ða1kj � a3kjÞ

XMj

m¼1

mþ p
mþ 1

	 

BmkjFðmþ2Þkjðz‘Þ

)

¼
jþ1
4l ðr1

yy � r1
xx � 2ir1

xy Þ; p ¼ 1
0; p 6¼ 1

�
ð23Þ
(ii) the equation
1‘ B01‘ þ 2a12‘B02‘ �
XN
j¼1
j 6¼‘

X2
k¼1

a1kj
XMj

m¼2
B�mkjFmkjðz‘Þ
h

þ B�mkjFmkjðz‘Þ
i
¼ � j þ 1

4l
ðr1

xx þ r1
yy Þ ð24Þ
(iii) M‘ equations (p ¼ 2; . . . ;M‘ þ 1)
1‘ Bðp�1Þ1‘ þ a12‘Bðp�1Þ2‘
R1‘
R2‘

	 
p�1

�
XN
j¼1
j 6¼‘

Fðp�1Þ1‘ðzjÞ
X2
k¼1

a1kj
XMj

m¼2

mþ p � 2
m� 1

	 

B�mkjFmkjðz‘Þ ¼ 0 ð25Þ
(iv) M‘ � 1 equations (p ¼ 1; . . . ;M‘ � 1)
c12‘
2

B�ðpþ1Þ2‘ � a11‘
R1‘
R2‘

	 
pþ1

B�ðpþ1Þ1‘ þ
XN
j¼1
j 6¼‘

Fðp�1Þ2‘ðzjÞ
X2
k¼1

ð2a1kj

(
� a3kjÞpF2kjðz‘ÞB0kj

þ a1kj
XMj

m¼2
p

mþ p � 1
m� 1

	 

B�mkjFmkjðz‘Þ F22‘ðzjÞ

mþ p
p þ 1

	�
þ F2kjðz‘Þ

mþ p
m

� z‘ � zj
z‘ � zj


�

þ ða1kj � a3kjÞ
XMj

m¼1

mþ p

mþ 1

	 

BmkjFðmþ2Þkjðz‘Þ

)
¼

jþ1
4l ðr1

yy � r1
xx � 2ir1

xy Þ; p ¼ 1
0; p 6¼ 1

�
ð26Þ
(v) the equation
2‘ B02‘ þ ð2a11‘ � a31‘ÞB01‘
R1‘
R2‘

	 
2
�
XN
j¼1
j 6¼‘

X2
k¼1

a1kj
XMj

m¼2
B�mkjFmkjðz‘Þ
h

þ B�mkjFmkjðz‘Þ
i

¼ � j þ 1
4l

r1
xx

�
þ r1

yy

�
ð27Þ
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(vi) M‘ equations (p ¼ 2; . . . ;M‘ þ 1)

c3
2

m

	

2‘ Bðp�1Þ2‘ þ ða11‘ � a31‘ÞBðp�1Þ1‘
R1‘
R2‘

	 
pþ1

þ pa11‘
R1‘
R2‘

	 
p�1 R1‘
R2‘

	 
2"
� 1
#
B�ðp�1Þ1‘

�
XN
j¼1
j6¼‘

Fðp�1Þ2‘ðzjÞ
X2
k¼1

a1kj
XMj

m¼2

mþ p � 2
m� 1

	 

B�mkjFmkjðz‘Þ ¼ 0 ð28Þ
where the binomial coefficients are defined as
n



¼ n!
m!ðn� mÞ! ð29Þ
By writing these equations for ‘ ¼ 1; . . . ;N and separating real and imaginary parts, we get finally the

real system of
PN

‘¼1 n‘ (where n‘ is given by (21)) linear algebraic equations
AX ¼ D ð30Þ

The matrix of this system has the following form
A ¼
A11 � � � A1N

..

. ..
. ..

.

AN1 � � � ANN

2
64

3
75 ð31Þ
where A‘‘ is submatrix (22). The submatrix A‘j (j 6¼ ‘) of dimension (n‘ � nj) is a full submatrix that ex-
presses the influence of the jth inclusion on the ‘th inclusion. The vector of unknowns X and the right-hand
side vector D can be written as
X ¼
X1

..

.

XN

2
64

3
75; D ¼

D1

..

.

DN

2
64

3
75 ð32Þ
where subvectors X‘ and D‘ are given by (17) and (20).

The system (30) can be solved by using a Gauss–Seidel iterative algorithm (Golub and Van Loan, 1996).

The number of terms M‘ of the complex Fourier series can be determined during the external iterative

procedure in the same manner as described in Mogilevskaya and Crouch (2001).
7. Calculation of the displacements, stresses, and strains

The Kolosov–Muskhelishvili potentials uðzÞ and wðzÞ can be obtained by substituting (10) into (8).
Again, all the integrals can all be calculated analytically. Letting
X1kjðzÞ ¼ a1kjRkj

XMj

m¼2
B�mkjFðm�1ÞkjðzÞ=ðm� 1Þ

X2kjðzÞ ¼ a1kj RkjF1kjðzÞ
�h

þ �zj
�iXMj

m¼2
B�mkjFmkjðzÞ þ ð2a1kj � a3kjÞB0kjRkjF1kjðzÞ

þ ða1kj�a3kjÞRkj

XMj

m¼1
BmkjFðmþ1ÞkjðzÞ=ðmþ 1Þ

ð33Þ
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and neglecting constant terms, the final expressions for the potentials can be written as follows:

(i) the evaluation point is inside an inclusion (e.g. jz� z‘j6R1‘)
uð

wð

uð

wð

uð

wð
zÞ ¼ 2l1‘
j1‘ þ 1

X2
k¼1

a1k‘Rk‘

XM‘

m¼0
Bmk‘= ðm

�
8>>>><
>>>>:

þ 1ÞFðmþ1Þk‘ðzÞ
�
þ
XN
j¼1
j 6¼‘

X1kjðzÞ

9>>>>=
>>>>;

þ u1ðzÞ

zÞ ¼ � 2l1‘
j1‘ þ 1

X2
k¼1

a1k‘ Rk‘F1k‘ðzÞ½

8>>>><
>>>>:

þ z‘�
XM‘

m¼1
Bmk‘=Fmk‘ðzÞ

þ ða3k‘ � a1k‘ÞRk‘

XM‘

m¼2
B�mk‘= ðm

�
� 1ÞFðm�1Þk‘ðzÞ

�
�
XN
j¼1
j 6¼‘

X2kjðzÞ

9>>>>=
>>>>;

þ w1ðzÞ

ð34Þ
(ii) the evaluation point is inside an interphase (e.g. R1‘ < jz� z‘j6R2‘)
zÞ ¼ 2l2‘
j2‘ þ 1

a11‘R1‘
XM‘

m¼2
B�m1‘Fðm�1Þ1‘ðzÞ=ðm

8>>><
>>>:

� 1Þ

þ a12‘R2‘
XM‘

m¼0
Bm2‘= ðm

�
þ 1ÞFðmþ1Þ2‘ðzÞ

�
þ
XN
j¼1
j 6¼‘

X2
k¼1

X1kjðzÞ

9>>>=
>>>;

þ u1ðzÞ

zÞ ¼ 2l2‘
j2‘ þ 1

ð2a11‘

8>>><
>>>:

� a31‘ÞB01‘R1‘F11‘ðzÞ þ a11‘ R1‘F11‘ðzÞ½ þ z‘�
XM‘

m¼2
B�m1‘Fm1‘ðzÞ

� a12‘ R2‘F12‘ðzÞ½ þ z‘�
XM‘

m¼1
Bm2‘=Fm2‘ðzÞ þ ða11‘ � a31‘ÞR1‘

XM‘

m¼1
Bm1‘Fðmþ1Þ1‘ðzÞ=ðmþ 1Þ

þ ða12‘ � a32‘ÞR2‘
XM‘

m¼2
B�m2‘= ðm

�
� 1ÞFðm�1Þ2‘ðzÞ

�
þ
XN
j¼1
j6¼‘

X2
k¼1

X2kjðzÞ

9>>>=
>>>;

þ w1ðzÞ

ð35Þ
(iii) the evaluation point z is inside the matrix
zÞ ¼ 2l
j þ 1

XN
j¼1

X2
k¼1

X1kjðzÞ þ u1ðzÞ

zÞ ¼ 2l
j þ 1

XN
j¼1

X2
k¼1

X2kjðzÞ þ w1ðzÞ
ð36Þ
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The displacements and stresses inside the inclusions, interphases, and the matrix can be calculated by

using formulae (7), (34)–(36), and (9). The complete expressions are given in Appendixes A and B.

The strains inside the inclusions, interphases, and the matrix can be found from the following relations
�xx þ eyy ¼
1� 2m‘
2l‘

ðrxx þ ryyÞ

eyy � �xx þ 2i�xy ¼
1

2l‘

ðryy � rxx þ 2irxyÞ
ð37Þ
where m‘ and l‘ are defined as at the end of Section 3.
8. Numerical examples

8.1. Single inclusion

We showed in Section 5 that our approach gives the analytical solution for the case of a single inclusion.
Nevertheless, we perform numerical simulations for this simple case to study two different interphase re-

gimes described by Benveniste and Miloh (2001): a spring type interphase and a membrane type interphase.

Consider a circular inclusion of unit radius (R ¼ 1) centered at z ¼ 0 and let the thickness of the
interphase be h. Benveniste and Miloh (2001) represented a thin interphase by a curve separating the fiber
and the matrix, and, depending on the interphase properties, showed that seven distinct regimes exist when

the parameter � ¼ h=L � 1 (L is a typical radius of curvature for the curve representing the interphase). We
assume that � (in our case � ¼ h=R ¼ h) is equal to 10�3. We suppose for simplicity that the Poisson�s ratios
of the fiber, matrix, and interphase are the same: mfiber ¼ mmatrix ¼ minterphase ¼ 0:35. For the shear moduli we
assume that lfiber=lmatrix ¼ 5. The dimensionless Lam�e parameters of the interphase introduced by Ben-
veniste and Miloh (2001) are defined as
~kinterphase; ~linterphase
� �

¼ kinterphase; linterphase
' (

=ðk0 þ 2l0Þ
where
k0 ¼ ðkfiber þ kmatrixÞ=2; l0 ¼ ðlfiber þ lmatrixÞ=2
8.1.1. Spring type interphase

In this case the tractions are continuous through the interphase and jumps of the normal and shear

components of displacement are proportional to the corresponding components of traction, i.e.
Dus ¼ gsrs; Dun ¼ gnrn ð38Þ

Benveniste and Miloh (2001) showed using an asymptotic analysis that a spring type interphase exists when
the following conditions are satisfied
~kinterphase � �; ~linterphase � � ð39Þ
Following Hashin (1990, 1991) they express the coefficients gs and gn via interphase parameters as follows
gs ¼ h=linterphase; gn ¼ h=ðkinterphase þ 2linterphaseÞ ð40Þ
We solve the problem of a single inclusion under uniaxial tension parallel to the x axis using the ap-
proach explained in Section 5. To satisfy (39) we take
linterphase=lmatrix ¼ 13� 10�3
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For comparison with Benveniste and Miloh (2001) we define the jumps in the normal and shear compo-

nents of displacement and traction as the following differences between their values on the boundary of the

interphase L2 and the boundary of the inclusion L1 (note that in our analysis the displacements and trac-
tions are continuous throughout the interphase):
Drn ¼ rnjL2 � rnjL1 ; Drs ¼ rsjL2 � rsjL1 ; Dun ¼ unjL2 � unjL1 ; Dus ¼ usjL2 � usjL1 ð41Þ
In the problem under consideration we find that zero traction jump conditions are satisfied to within 3

decimal places. Using (40) we also find that gn ¼ ð3R=169Þ=lmatrix, gs ¼ ðR=13Þ=lmatrix. Plots of Dus, gsrs and

Dun, gnrn are shown in Fig. 2, from which we conclude that the spring type conditions (38) are well satisfied.

Note that if we solve the same single inclusion problem using the approach from Mogilevskaya and

Crouch (2002) (i.e. assuming that (a) the thickness of the interphase layer is neglected, (b) tractions are

continuous across the interphase, and (c) spring type conditions (38) are enforced along the boundary of the
inclusion) we will get results that are within plotting accuracy of ones plotted in Fig. 2.

8.1.2. Discussion of the problem of overlapping

It can be concluded from Fig. 2 that the normal displacement jump Dun is negative along some parts of
the boundary (i.e. when 70�6 h6 90�). This means that if the thickness of the interphase is neglected, the
fibers and matrix overlap along these parts. This physically unrealistic behavior is considered as the main

shortcoming of the spring type interface model. It is therefore of interest to see whether the present model

with an interphase layer will eliminate the overlapping.

In the example considered above, Dun reaches its minimum at the point h ¼ 90� where

Dun � �3:07� 10�3 ¼ �3:07� h. Thus, overlapping still takes place even if the interphase layer is present.
Fig. 2. Spring type interphase.
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On the other hand, one could always prevent the overlapping by proportionally increasing the interphase

thickness h and shear modulus linterphase by a factor of 3.07 (so that conditions (39) are still satisfied).
Another way of preventing overlapping is by proportionally reducing the load. Note that for the spring

type interface model (when the thickness of the interphase is neglected) those procedures would not prevent
overlapping but just decrease its amplitude.

In conclusion, the problem of overlapping is not completely eliminated by introducing the interphase

layer, but the phenomenon can be attributed to rather extreme cases of interphase conditions. It should be

noted that for practical problems of coated inclusions these extreme conditions are not likely to occur.

8.1.3. Membrane type interphase

In this case the displacements are continuous through the interphase and jumps of normal and shear

components of traction satisfy the following conditions (written here for the particular case of a circular
boundary)
Drn ¼ P ehh; Drs ¼ �P
oehh

os0
ð42Þ
where ehh is the circumferential strain at the interphase boundary from the interphase side, s0 is arc length
and
P ¼
2linterphase
1� minterphase

h

Fig. 3. Membrane type interphase.
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According to Benveniste and Miloh (2001), such an interphase exists when
~kinterphase � 1=�; ~linterphase � 1=� ð43Þ
We again solve the problem of a single inclusion under uniaxial tension along the x axis using the ap-
proach explained in Section 5. To satisfy (43) we take
linterphase=lmatrix ¼ 13� 103
We calculate the jumps in the normal and shear components of displacement and traction using (41), as well

as expressions for P ehh and �Poehh=os0. The jumps in the displacements are found to be zero to within 4
decimal places. The results of the comparisons of P ehh and �Poehh=os0 with Drn and Drs are shown in Fig. 3,

where it can be seen that the membrane type conditions (42) are accurately represented.

8.2. Two inclusions

To study the interaction between inclusions with interphases we consider first a case of two coated

copper inclusions inside an infinite epoxy matrix (Fig. 4). The properties of the inclusions and matrix are

taken from the paper by Al-Ostaz and Jasiuk (1996), who considered the plane stress case. Both inclusions

have radius R ¼ 3:2 mm and are centered along the x axis. A uniaxial stress ryy ¼ r0 ¼ 3:39 MPa is applied
at infinity. In our calculations we assume plane strain conditions. The elastic properties of the inclusions,

coatings, and matrix (transformed for the plane strain case) are listed in Table 1.
Following Al-Ostaz and Jasiuk (1996) we suppose first that the thicknesses of the interphases are the

same for both inclusions (0.8 mm) and the distance between their centers is 11.2 mm. Calculations are

performed for the cases of stiff and compliant coatings as well as a reference case of a perfectly bonded

inclusion without an interphase (i.e. the elastic properties in the coatings are the same as in the matrix). The

accuracy parameters d1 and d2 used by Mogilevskaya and Crouch (2001) for the Gauss–Seidel and external
Fig. 4. Two inclusion under uniaxial tension r1
yy ¼ r0.



Table 1

Elastic properties of the inclusions, coatings and matrix

Material m E (MPa) E=Ematrix

Inclusion 0.2537 112220.22 38.9

Matrix 0.2647 2884.63 1

Compliant coating 0.2647 193.27 0.067

Stiff coating 0.2647 57692.64 20.0
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iterative algorithms are chosen as 10�6 and 10�3, respectively. The number of terms in Fourier series (the
same for both inclusions) needed to achieve the chosen accuracy was equal to 9 to for the case of perfect

bonding, 6 for the compliant coating, and 9 for the stiff coating.

Al-Ostaz and Jasiuk (1996) presented results for these problems in the form of the maximum normalized

effective stress reff=r0 ¼ ½ðrrr � rhhÞ2 þ r2rr þ r2hh þ 6r2rh�
1=2

=ð
ffiffiffi
2

p
r0Þ in the matrix, inclusions, and coatings. It

is not feasible for us to make a direct comparison with their calculations for two reasons. First, Al-Ostaz

and Jasiuk placed the inclusions in a finite plate of dimension 3R� 5R whereas we have used an infinite
region. Second and more important, they did not specify the points where the maximum values of reff=r0
were calculated. Instead of a direct comparison, we present the distribution of reff=r0 along the x axis for
the different types of coatings (Fig. 5). Due to symmetry, the results are presented for xP 0.

One can see from Fig. 5 that, compared to the case of a perfect bond, a stiff coating increases the effective

stresses inside the inclusion (2:4 mm6 x6 8:8 mm), except for a small area in its center where a small
relaxation zone exists. Effective stresses in the coating (1:6 mm6 x < 2:4 mm and 8:8 mm < x6 9:6 mm)
are much higher than for the perfect bond case; the effective stresses in the matrix are relaxed. For the case
Fig. 5. Distribution of reff=r0 along axis Ox.



S.G. Mogilevskaya, S.L. Crouch / International Journal of Solids and Structures 41 (2004) 1285–1311 1301
of a compliant coating the results are reversed: the effective stresses in the inclusion and coating are relaxed,

and are concentrated in the matrix near matrix–coating boundary. Qualitatively these results agree with

these reported by Al-Ostaz and Jasiuk (1996).

To characterize the global behavior of the stress fields we present contours of the normalized principal
stress difference ðr1 � r2Þ=r0 (twice the magnitude of the normalized shear stress) for the cases of different
coatings (Figs. 6–8). Due to symmetry, the results are presented for xP 0, y P 0. One can see that in the

case of a perfect bond the load is mostly carried by the inclusions. A compliant coating releases the stresses

inside the inclusions and coatings, and the matrix carries most of the load. A stiff coating increases the

stresses in the inclusions and coatings, and the maximum normalized principal stress difference is located

near the inclusion–coating boundary.

Fig. 9 shows contours of the normalized principal stress difference ðr1 � r2Þ=r0 for the case when
inclusions with stiff coatings are near touching (the distance between the centers of the inclusions is equal to
8.2 mm). The number of terms in the Fourier series for this case is equal to 23 for both inclusions (the

parameters d1 and d2 are taken to be the same as above). Fig. 10 illustrates the effect of interactions of the
inclusions with the different coatings and interphase thickness. The left and right inclusions have stiff and

compliant coatings, respectively. The distance between the centers of the inclusions is equal to 8.2 mm. The

thickness of the interphase for the left inclusion is 0.8 mm and for the right one is 0.4 mm. The number of

terms in Fourier series for this case is equal to 16 for the left inclusion and 13 for the right one. Due to

symmetry, the results are presented for y P 0.
Fig. 6. Contours of ðr1 � r2Þ=r0 for two perfectly bonded inclusions.



Fig. 7. Contours of ðr1 � r2Þ=r0 for two inclusions with compliant coatings.
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8.3. Equally spaced multiple inclusions

Consider a finite square array of l� l inclusions shown in Fig. 11. All the inclusions (fibers) have the
same radii R1j ¼ 8:5 lm (j ¼ 1; . . . ; l). The radii of the interphases are also all the same (R2j ¼ 9:5 lm). The
volume fraction of the fibers is equal to 0.50 (the distances 2L between their centers are equal to 21.30634
lm). We take the elastic properties of the constituent materials as follows (we assume plane strain con-
ditions and consider the case of four different Young�s moduli for the interphases):
Efiber ¼ 84:0 GPa; mfiber ¼ 0:22
Einterphase ¼ 4:0–12:0 GPa; minterphase ¼ 0:34
Ematrix ¼ 4:0 GPa; mmatrix ¼ 0:34

8<
:

An infinite array with the same properties was considered by Wacker et al. (1998) (finite elements) and

Liu et al. (2000) (boundary elements), who used a unit cell approach. These authors assumed macro-

isotropic behavior of the equivalent homogeneous material (characterized by two elastic constants: effective
Young�s modulus Eeff and effective Poisson�s ratio meff ) and studied the effect of variations in Einterphase on
Eeff . In the approach by Wacker et al., the boundary of the unit cell was subjected to displacement
boundary conditions and Eeff was calculated using the fact that the strain energy of a composite material is
equal to the strain energy of an equivalent homogeneous one. A mesh of 1834 linear triangular elements

was used to model one quarter of a unit cell.



Fig. 8. Contours of ðr1 � r2Þ=r0 for two inclusions with stiff coatings.
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Liu et al. calculated Eeff from average stress–strain relations along the edge of a unit cell perpendicular to
the direction of an applied uniaxial tension at infinity. They used two types of boundary conditions for the

unit cell: BEM 1––traction free conditions (rn ¼ rs ¼ 0 along edges parallel to the applied remote tension)
and BEM 2––straight line conditions (the edges parallel to the applied load remain straight after defor-

mation). The boundary element mesh involved 64 quadratic boundary elements––16 elements for each

circular boundary and 32 elements for the straight boundaries.

Taking different values of l, we used our approach to compute the stress and displacement distributions
in the basic cell (�L6 x6L, �L6 y6 L) of a finite array. Analysis of the displacement distribution along
the boundaries of the basic cell showed that displacements at the edges parallel to the applied load were
constant to within 4–6 digits when lP 11. The parameters d1 and d2 (Mogilevskaya and Crouch, 2001) for
the Gauss–Seidel and external iterative algorithms were chosen as 10�6 and 10�3, respectively. The algo-

rithm converged within the specified accuracy with between 14 and 16 terms in the Fourier series,

depending on the interphase properties. Using the assumption of macro-isotropic behavior of the equiv-

alent homogeneous material we calculated the elastic constants of the equivalent homogeneous material.

Eeff was calculated from average stress–strain relations along the edge x ¼ L, �L6 y6 L. Table 2 shows the
comparison between our results (with l ¼ 11) and the ones obtained by Wacker et al. (1998) and Liu et al.
(2000). Our results agree better with finite element ones.
Table 3 shows the variation of Eeff with the interphase properties (Young�s modulus and thickness). It is

worth mentioning that the interphase thickness does not introduce any singularity in the present approach.

The number of terms in Fourier series remains of the same order as the interphase thickness decreases.



Fig. 9. Contours of ðr1 � r2Þ=r0 for two close to touching inclusions with stiff coatings.

Fig. 10. Contours of ðr1 � r2Þ=r0 for two inclusions with stiff (left) and compliant (right) coatings.
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8.4. Random multiple inclusions

The final example shows the use of our approach for the solution of problems with multiple randomly

distributed coated inclusions. Fig. 12 shows contours of r1 � r2 in a plane with 30 coated inclusions (volume



Fig. 11. Rectangular array of inclusions.

Table 2

Variation of Eeff with Einterphase (comparison with BEM and FEM)

Einterphase (GPa) BEM 1 BEM 2 FEM Current approach

4.0 11.61 11.61 12.25 12.09

6.0 13.18 13.02 13.71 13.68

8.0 13.97 13.89 14.68 14.67

12.0 15.04 14.93 15.91 15.84

Table 3

Variation of Eeff with the interphase properties (Einterphase and R2j � R1j)

Einterphase (GPa) R2j � R1j (lm)

1.0 0.5 0.1 0.01

4.0 12.09 12.09 12.09 12.09

6.0 13.68 12.86 12.24 12.10

8.0 14.67 13.29 12.32 12.11

12.0 15.84 13.76 12.40 12.12
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fraction 0.53) subjected to uniform uniaxial tension r1
xx ¼ 1:0. The Poisson�s ratios of the inclusions, matrix,

and the coatings are the same: minclusion ¼ mmatrix ¼ mcoating ¼ 0:2. All the inclusions are stiff

(linclusion=lmatrix ¼ 10). Two types of coatings are present: stiff (lcoating=lmatrix ¼ 2) for 23 inclusions and
compliant (lcoating=lmatrix ¼ 0:5) for 7. The numbers of terms in the Fourier series for the inclusions varied
from 10 to 21 (with d1 ¼ 10�6 and d2 ¼ 10�3). The solution of this problem took less than aminute on a 2GHz
PC. The small number of the inclusions in this example was chosen merely to provide convenient visual



Fig. 12. Contours of r1 � r2 for 30 randomly distributed coated inclusions subjected to uniaxial tension at infinity (r1
xx ¼ 1:0).
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presentation of the results. The approach can be used to solve much more complicated problems with hun-

dreds or thousands of inclusions.
9. Conclusions

In this paper we extend a recently developed numerical technique for solving the problem of an infinite

elastic plane containing a large number of circular elastic inclusions to the case of inclusions with homo-
geneous uniform interphase layers. The method allows one to solve problems involving numerous inclu-

sions with arbitrary elastic properties, sizes, and interphase thicknesses. The only restrictions are that the

interphases (and inclusions) may not overlap and that perfect bonding is assumed to exist between the

interphases, the inclusions, and the material matrix. The test results obtained with the approach agree well

with analytical and numerical solutions available in the literature. The main advantage of the approach is

that apart from round-off the only errors introduced into the solution are due to truncation of the Fourier

series used to approximate the unknown tractions at the inclusion–interphase and interphase–matrix

boundaries. Compared to finite element and boundary element solutions of similar problems, our approach
requires relatively few of degrees of freedom to model inclusions with very thin interphases. It is shown that
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the problem of overlapping of fibers and matrix, though not completely eliminated in present model, can be

attributed to rather extreme interphase conditions. Natural future developments of the approach include

the extension to problems with radially graded interphases.
Appendix A. Stresses at internal points

Using the notation
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it can be shown that the stresses inside the ‘th inclusion are
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the stresses inside the ‘th interphase are
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Appendix B. Displacements at internal points
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it can be shown that the displacements inside the ‘th inclusion are
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